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Abstract-A void growth relation for ductile porous materials under intense dynamic general
loading conditions is presented. The mathematical model includes the influence of inertial effects,
material rate sensitivity, as well as the contribution of void surface energy and material work
hardening. Numerical analysis shows that inertia appears to resist the growth of voids. The inertial
effects increase quickly with the loading rates. The theoretical analysis suggests that the inertial
effects cannot be neglected at high loading rates. Plate-impact tests of aluminum alloy are performed
with light gas gun. The processes of dynamic damage in aluminum alloy are successfully simulated
with a finite-difference dynamic code in which the theoretical model presented in this paper is
incorporated.

1. INTRODUCTION

Dynamic ductile fracture with different loading conditions, such as high speed impact,
explosive loading, dynamic tension of smooth or notched bar specimens, is a consequence
of the nucleation, growth and coalescence of voids in a triaxial stress field. In comparison
to ductile damage under static loading, dynamic ductile damage is much more complex.
The inertial effects, rate-dependence and thermal influence from rapid plastic deformation
are the characteristics under intense dynamic loading. The literature on this subject is
extensive. By investigating the behavior of dynamic damage and fracture in solids in detail,
Curran and co-workers (Barber et al., 1972; Seaman et al., 1976; Curran et al., 1977, 1987)
established computational models called NAG (nucleation and growth) models for ductile
and brittle fracture. In their models, two internal state variables N (the number of mic
rovoids or microcracks per unit volume) and R (the average size of a microvoid or mic
rocrack) are introduced to describe the processes of dynamic damage and fracture in solids.
The NAG models have sufficient generality to include the statistical distribution of one or
more variables such as porosity, void density, etc., but require numerous phenomenological
constants that are difficult to obtain. Carroll and Holt (1972) developed static and dynamic
pore-collapse relations for ductile porous materials. The material was assumed to be rate
insensitive and ideally plastic. They suggested that the effect of elastic compressibility in
the matrix material is small, and can go immediately to the case of fully plastic deformation
around the void. Johnson (1981) applied Carroll and Holt's approach to void growth in a
viscoplastic medium. Cochran and Banner (1977) studied spallation in uranium using a
simple theoretical modeL Rajendran et al. (1989) proposed a new dynamic failure model
to describe void nucleation, growth and coalescence in ductile metals. Nash (Nash and
Cullis 1984; Nash, 1985) directly used Rice's static model to model ductile fracture in
triaxial states of stress. Cortes (1992) adopted Carroll and Holt's assumption to investigate
the growth of a microvoid under intense dynamic loading. Review articles (Meyers and
Aimone 1983; Curran et al., 1987; Grady, 1988) on dynamic ductile fracture explain in
some detail the most relevant results of experimental and theoretical studies.
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Fig. I. A spherical element of material of radius b containing a single void of radius a is subjected
to an applied external stress :E,;.

The inertial effects are the major feature of intense dynamic loading. Our theoretical
analysis shows that their influence on the growth of dynamic ductile voids is significant.
Since the problem is quite complicated, most investigators neglected them.

The influence of deviatoric stresses is also important for most of the processes of
dynamic ductile fracture. Although in the past several authors have studied the void growth
problem under triaxiality conditions (Rice and Tracey, 1969; Gurson, 1977; Duva and
Hutchinson, 1984; Cocks, 1989), they have limited their analysis to static loading, ignoring
the influence of inertial effects. In this paper, we deal with dynamic growth of voids in
ductile materials under extremely high rates of general loading. A void growth relation, in
which the inertial effects, rate-dependence, the contribution of the void surface energy are
considered, is presented by means of the energy principles.

To simplify theoretical analysis, we assume that the matrix material is incompressible
during the void growth. We also assume that the void remains spherical all the time. These
assumptions lead to great simplification of the theoretical analysis, so that we can obtain
the exact relation for void growth.

2. VOID GROWTH RELATION

We assume that the porous material consists of a suspension of pores in a matrix of
homogeneous isotropic ductile solid materials which is subjected to an external stress Lij'
and that the porous material is statistically homogeneous and isotropic so that it can be
effectively modeled by a homogeneous isotropic solid material. With these assumptions, we
can study the void growth by considering a hole sphere with inner radius a and outer radius
b (see Fig. I). Distention ,1. is defined as

b3

'Y.=---
. h 3 _a3 '

(1)

We investigate the response of this hole sphere to time-dependent external stress and
zero internal pressure, and try to obtain the relation between the applied stress L;j and
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distention rx(t). We expect that the relation will adequately describe the void growth for the
effective homogeneous material.

Taking the matrix material and void as a system, work done by the applied external
stress L u is equal to the change of the system energy, namely

(2)

where !J.EK , !J.Es and !J.Ej denote the changes of the kinetic energy EK , the void surface
energy Es, and the internal energy E1 in the system, respectively. W denotes the work done
by the applied external stress Lif. Since the contribution of the initial elastic and elastic
plastic phases of the process for the void growth is small (Carroll and Holt, 1972), we
directly begin to consider fully plastic deformation in the solid around the void. From the
assumption of incompressibility in the matrix material surrounding the void, the following
expressions can be derived (Johnson, 1981):

r' = r6 - B (t) (3)

1 rxo- rx
(4)B(t) = a iJ --

ISJ(o-

B(t) rxo~ rx
(5), rx-Ia'

B (t) rxo~ rx
(6)

b' C/.

where r is Eulerian radial position of a Lagrangian point that travels with the material. The
initial radius of that point is ro. B (t) is a function related to the rate of void growth. ao is
the initial radius of the void. Let us consider !J.EK , !J.Es, !J.Ej and W, respectively. !J.EK is
given by

(7)

with

(8)

where (') denotes the differential with respect to time t. Ps is the density of the matrix
material. With the aim of eqn (I) and eqns (3)-(6), eqn (8) becomes

with

l

4na6 ] a~ps (SJ(o-I)I.1l (SJ(_I)I/'].,EK (rx) = --- 1- -- rx-
9(SJ(o-l) 2(C/.o-I) SJ(-I C/. .

In the same way, we can also obtain the expression of !J.Es :

l

4na3 ]9(rx _1)1/3.,
( )

0 0 r 1)2/'
Es rx = 9( -I) , (C/._. ,rxo ao

(9)

(10)

(II)

where I' is the surface energy expended per unit area during the hole expansion.
The matrix material is assumed to be linear work-hardening, and viscoplastic. Consti

tutive relation is supposed to be (Perzyna, 1986)
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(12)

where O"eqVl C~qv and t~qv denote the effective stress, the effective plastic strain and the effective
plastic strain rate in the matrix material, respectively. Yo is the yield stress of the matrix
material, H is a linear work-hardening coefficient, and YJ is the material viscosity. Since we
assume a plastic deformation process with spherical symmetry, the effective plastic strain
e~qv is given by Johnson and Mellor (1973):

p r
ceqv = 2In-.

ro

The change of internal energy I1Ej in the system is

By means ofegns (3)-(6) and egns (12)-(13), we finally have

where

(
a-I a ao )

F3 (a) = 2Yo In --1 +a In --I -aoIn --I
ao- a- ao-

_i'" In (h+ 1)F(a) - h dh,
"0

with

ao- a ao- a 2 ( a - I ao )
ho = --I' hi = --, Fs(a) =}YJ In-- +In--

I
.

a- aa ao-

(13)

(14)

(15)

(16)

(17)

(18)

(19)

Functions FJCa) , F4(a) and Fs(a) denote the influence of the yield stress of the matrix
material, the linear work-hardening and the material viscosity on the increment of internal
energy, respectively.

The work W done by external stress is as follows:

(20)

Here we assume L eqv and P to be the functions of distention a, that is, L eqv = Leqv(a) and
P = P (a). Substitution of expressions of I1EK , I1Es, I1Ej and W into egn (2) gives

(21)

where
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(22)

F7 (a) = F2 (a) + F3 (a) + F4 (a) - 3 f" [~Leqv(a') - P (a')] d:x' - F, (ao)eX6 - F2 (ao) (23)
"0

(24)

Equation (21) is the relationship from which we obtain the rate-dependent response
of the void growth under dynamic loading. Fia) represents the influence of change of the
void surface energy on the void growth. The terms in eqn (21) have a clear physical
significance. The first term F, (a)a 2 -FI (ao)a6 on the left of eqn (21) represents inertial
resistance to the void growth. The second term Fs(a)a denotes the influence of the material
viscosity, which describes the effect of the rate sensitivity and is one of the major features
differing from the quasi-static growth of voids. Other researchers' studies, such as Curran
et al. (1987), Johnson (1981) and Cortes (1992), have resulted in the same fact. The third
term FiC:x) is the total effects of the applied external stress, the change of the void surface
energy, work-hardening and the yield stress in the solid surrounding the void on the void
growth. These effects also can be isolated and studied in great depth. Dynamic ductile
fracture is a consequence of the nucleation, growth and coalescence of voids in a triaxial
stress field. Besides the mean stress, the deviatoric stress, no doubt, may affect the void
growth. The influence of the deviatoric stress (or the deviatoric strain) on the void growth
is considered in Rice and Tracey's model (1969) and Gurson's model (1977). A modified
Gurson's model was successfully applied to model the cup--eone fracture in a round tensile
bar (Tvergaard and Needleman, 1984). But the effect of the deviatoric stress was not
included in Carroll and Holt's (1972) as well as Seaman et al.'s (1976) models of dynamic
ductile fracture. From eqn (21), the void growth rates rX can be given by

(25)

Since eX is a real variable, the following condition must be satisfied for the condition of the
void growth:

(26)

If the inertial effects are neglected, from eqn (21 ),eX is reduced to

(27)

3. THRESHOLD STRESSES FOR DYNAMIC GROWTH OF VOIDS

Define a quantity L as

(28)

Obviously, L represents the total external stress acting on the spherical element. It shows
that either the mean stress - P or the effective stress Leqv has a contribution to the void
growth. We consider the condition of the void growth, namely, eX ;:: O. From eqn (25), the
following inequality must be satisfied:
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Fig. 2. The threshold stress L,nt(O:) for the void growth decreases along with increase of distention 0:.

(29)

With the help of eqns (16)-(17) and (24), inequality (29) becomes

1[6/ (rto _1)1 1
3 4H 8H 0: 0 -I 0:-1 C( ]L(rt) ~- ~ ~- +-F(rt)----ln--+2Yoln--.

3 ao C( - I 3 3 0: - I 0:0 - 1 C( - 1
(30)

Let

(31)

where Lcrit(rt) is the threshold stress for dynamic growth of voids in general dynamic loading
conditions. The critical conditions that the applied external stress must satisfy for the void
growth is that

(32)

If the contributions of the change of the void surface energy and material work
hardening, as well as the action of the external deviatoric stress are neglected, eqn (31) is
reduced to

(33)

This is the result obtained by Carroll and Holt (1972).

4. NUMERICAL ANALYSIS OF THE MODEL

In this section, copper-like material is selected to be the material for the numerical
analysis with the density p = 8.92 (g cm- 3

), the yield stress Yo = 0.26 (GPa), the linear
work-hardening coefficient H = 0.25 (GPa), viscosity IJ = 0.1 (GPa /1s), and the surface
energy expended per unit area')' = 9 X 10-4 (GPa cm- 2

).

The relation of the threshold stress Lcrit(O:) and distention rt for the void growth in
terms of eqn (31) is depicted in Fig. 2. It shows that the threshold stress Lcrit(rt) decreases
quickly as distention .':1. increases. The maximum value of the threshold stress Lcri,(rt) is
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Fig. 3. Influence of inertia on the rate of increase of distention rx under the different loading rates.

(a) G = 0.3. (b) G = 0.01.

about 1.76 (GPa) which depends on the initial radius of the void ao and the initial distention
C/.o. Our experimental observation (Wang, 1993) shows that the initial radius of the void ao

is in the range 1-10 (pm), ao and:xo are given by 0.0005 (cm) and 1.0003. The results of
spall experiments in copper (Grady, 1988) show that the spall strength of copper is in the
range 1.0-2.5 (GPa). Theoretical calculation in this paper is consistent with experimental
measurements. The threshold stress of dynamic fracture of voids is larger than that of
quasi-static fracture. This may be due to the inertia or the kinetics associated with the
micromechanisms controlling the damage process.

To investigate the effects of inertia on the behavior of the void growth under the
different loading rate, we numerically analyze eqns (25) and (27). In order to simplify the
analysis, the material is assumed to be subjected to a linearly increasing external stress:

(34)

where Lo = LCrit(C/.O) and G is a constant. Figure 3 indicates that the influence of inertial
effects becomes larger with the increase of loading rates. The computational results of
numerical analysis in Fig. 3 suggest that the influence of inertial effects play, which appears
to resist the void growth, an important role in void growth under high rate loading
conditions. On the other hand, the numerical analysis in Fig. 3(b) also shows the fact that,
if the rate of applied external stress becomes much lower, the inertial effects can be ignored.
This result implies that the inertial effects are a mechanical phenomenon which appears
significantly in the condition of intense dynamic loading.

5. APPLICATION OF THE MODEL

5.1. Plate-impact tests
As an application of the foregoing theory, two spall experiments of aluminum alloy

are simulated. Specimens were machined into circular plates 70 mm in diameter. The
experiments were performed with a 101 mm bore single-stage light gas gun. The schematic
arrangement for the experiment is shown in Fig. 4. The impact velocities and size of flyers
and targets are listed in Table 1. The specimens were softly recovered with a specially
designed catcher to prevent any secondary damage. Measured stress-time histories recorded
with a manganin gauge in two spalled specimens of aluminum alloy are shown in Fig. 5. It
shows clearly the loading plateau and the signals of spallation. Peak stresses taken from
the manganin gauge reading are listed in Table 1.
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Fig. 4. Plate impact apparatus for spall study.

5.2. One-dimensional finite-difference calculations
The one-dimensional flow equations in terms of the Lagrangian position coordinate x

are

08 OU
-+-=0at ax

au O(J
Po -;;- - -;;- = 0 ,

ot Ox

aE au
Po -a -(J-a = 0,tx

(35)

where 8 == 1-(po/p), t is the time, P is the macroscopic average density of the porous
materials (Po is the initial density), u is the particle velocity in the x direction, (J is the
longitudinal stress component, and E is the internal energy per unit mass.

The material constitutive equation is written in terms of the macroscopic mean stress
- P and the deviatoric stress components Sij' In the model described here, void growth is
related only to the mean stress - P (pressure P is assumed negative in tension). The
deviatoric stress components depend on the shear modulus f.l and yield strength Y, which
are each functions of distention 'J.. The plastic yield condition for the porous materials is

lS. S .. :< y 2
2 Ij l) -.....;:: • (36)

No attempt was made to include work-hardening and rate-dependent terms of the type
used in eqn (12) for calculations of the wave profiles. These effects are still poorly understood
themselves and do not greatly influence the fracture process. This treatment can greatly
simplify calculation.

In the elastic region (3SijSij < 2 y 2
) the stress deviatoric rates are given by

dSij _ (dcft _-' .dc)
d - 2fl d ,(j'id't t· . t

(37)

where Gij is the macroscopic strain tensor component.
It is assumed that the function that relates pressure specific volume and specific internal

energy for the matrix material in the porous state is the same as that which relates these
quantities for the matrix material in its nonporous state (Carroll and Holt, 1972; Seaman
et aI" 1976). With this assumption, the P-a model gives the pressure in the porous material
as a function of specific volume, specific internal energy, and porosity. The form of this
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(b)
No.92-11 Vi 403.7 mls

Peak stress 1.18 GPa

No.92-14 Vi 316.9 mls

Peak stress 0.95 GPa

Fig. 5. Stress record from manganin gauge in PMMA behind aluminum alloy specimens. (a) Test I
and (b) test 2.
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Table I

Impact Thickness Peak stress
Test velocity (mm) O"max

no. (mm/1s-1) Flyer Target PMMA (GPa)

I 00404 6.0 9.9 11.7 1.18
2 0.317 6.3 9.8 11.9 0.95

Table 2. Material parameters for spallation
calculations

Aluminum PMMA*

Po(g cm- 1
)

Ko(GPa)
1 0

Yo(GPa)
H(GPa)
/1,(GPa)

fJ(GPa /1s)
y(GPa cm- 2)

2.78
79.57

1.7
0.55
0.5

25.0
0.001

1 x 10- 4

1.35

1.185
8.13

*PMMA is treated in these calculations as
a fluid (no shear strength).

function is determined by the pressure-specific volume-specific internal energy (PVE) func
tion for the matrix material in its nonporous state. We use the following PVE relation for
the porous material (Seaman et aI., 1976):

P = Ps(V/a, E)/a, (38)

where V is the macroscopic specific volume for the porous material which is defined as
V = Po/p. The specific internal energy for the matrix material is the same in the porous and
nonporous conditions, and the specific internal energy of the porous material is that of the
matrix material, that is, the surface energy of the pores is neglected. The PVE relation of
the matrix material is given by (Seaman et al., 1976)

(39)

where Ko is the adiabatic bulk modulus at zero pressure, r is the Gruneisen coefficient, and
here psr is assumed to be a constant given by its low-pressure value poro. Relation between
the macroscopic yield strength Yand distention a is given by (Johnson, 198 I)

Y = Yo/a. (40)

The shear modulus is assumed to be degraded by the presence of voids. Relation between
the shear modulus fl and distention a is suggested by (Mackenzie, 1950)

Ps ( 6Ko+ 12ps a- I)fl=- I----~
:t 9Ko+8fls a '

(41)

where fls is the material shear modulus in the solid surrounding the void.
It is assumed that coalescence takes place when the distention a is equal to or greater

than a threshold value acrit which is given in Table 2. We also assume that, when macroscopic
stress L [defined as eqn (28)] is equal or greater than the threshold stress LCrit [eqn (31)],
microvoids appear and begin to grow. Otherwise, the material is intact.
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Fig. 6. Comparison of stress record from manganin gauge in PMMA behind aluminum alloy with
computed stress. (a) Test 1 and (b) test 2.

Application of the dynamic failure analysis to the problem oftime-dependent spallation
in aluminum alloy gives very good representations of the data (as shown in Fig. 6) with the
material parameters listed in Table 2.

6. DISCUSSION

A great many experimental observations (Meyers and Aimone, 1983; Curran et al.,
1987; Wang, 1993) show that the dynamic ductile fracture in solids is a complicated process
which, in general, involves nucleation, growth and coalsecence of microvoids. The most
common sites for void nucleation are hard second-phase particles or inclusions. The differ
ent distributions of hard second-phase particles or inclusions have a significant influence
on the process of fracture in ductile materials. Besides these facts, rate-dependence of the
materials, local inertial effects, thermal effects from the high rate plastic flow localization,
as well as the physical properties of the materials are also very important factors in
influencing the fracture modes. Description of the whole process of dynamic ductile fracture
in detail is quite difficult or almost impossible. To develop a model to investigate the event
of dynamic ductile fracture, we must make some assumptions. In our theoretical analysis,
the following assumptions are made:

(I) The matrix is incompressible during pore growth. Based on the assumption of
matrix incompressibility, we derived the pore-growth model. This assumption and the
spherical geometry afforded a great simplification of the theoretical analysis. After com
paring the porosity profiles, which were computed by a finite-difference computer code, for
an incompressible hollow-sphere with those for a hollow aluminum sphere, Carroll and
Holt (1972) suggested that compressibility of the matrix material greatly complicates the
analysis, while the effect on the behavior of the porosity should not be great. Luk et al.
(1991) used the models considering the material as incompressible and compressible to
investigate dynamic spherical cavity expansion of strain-hardening materials. They found
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that, for an incompressible material, closed-form solutions could be obtained, whereas the
compressible results required the numerical solution of differential equations. That is, it is
difficult to obtain the closed form of the pore-growth relation if we consider the com
pressibility of the materials.

(2) The porous ductile material is statistically homogeneous and isotropic, that is,
pores are fairly well distributed through the whole material. These assumptions neglect the
distributions of microvoids with different radius. With these assumptions, we can study the
behavior of dynamic damage in ductile materials by considering a hollow sphere of the
matrix material of inner radius a and outer radius b or the ratio of total volume to matrix
volume a. Seaman et al. (1976) made detailed microscopic observations before and after
shock-wave loading, and developed a statistical model of dynamic fracture called the NAG
model. In the model, the distributions of radii of voids are included. But there are numerous
phenomenological constants that are difficult to obtain. rn fact, it is inconvenient to use
the NAG model in practice.

(3) The equation of state for the material in the porous state is the same as in its
nonporous state. Therefore, we can describe the behavior of dynamic damage and fracture
in ductile materials in terms of continuum mechanics.

Thermal effects from high rate plastic deformation are not considered in our theoretical
analysis. Johnson (1981) once numerically analyzed the change oftemperature at expanding
pore wall for copper-like material. and showed that if all the plastic work went into heat,
the temperature at the expanding pore wall could be a substantial fraction of the melting
temperature. Cortes (1992) investigated the thermal softening of the matrix material. He
indicated that thermal softening was found to have a negligible influence on the dynamic
tensile strength in the case of aluminum and copper-like materials, due to an excessively
localized heat generation near the surface of the voids. How thermal effects influence the
dynamic growth of a ductile void and how large thermal effects are comprise the work we
want to carryon in the future.

The dynamic ductile model presented in this work contains many of the essential
features of the process, such as rate-dependent sensitivity, inertial effects, etc. It is a
simplified theoretical model in which only a few parameters (Yo the yield strength, '1 the
viscosity coefficient, H the linear work-hardening coefficient and y the density of void
surface energy) need to be determined. This makes it easy to apply in studies of the behavior
of dynamic ductile damage and fracture in solids.

7. SUMMARY

A dynamic ductile failure model is developed in which the inertial effects, the material
rate sensitivity, the action of deviatoric stress and the effect of void surface energy are
considered. Spall fracture of aluminum alloy for plate-impact conditions are successfully
described with the model. Numerical calculations show that the inertial effects appear to
resist the growth of voids. The higher the loading rates are, the greater the inertial effects
are. It suggests that inertial effects should not be neglected in the whole process of spall
fracture.
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